INSTITUTIONAL CONTROL Institutional control implemented by commercial utilities and DOE provides monitoring and maintenance of storage facilities to ensure that radiological releases to the environment and radiation doses to workers and the public remain within Federal limits and DOE Order requirements. Having attained this goal, institutional control ensures the maintenance of incurred doses as low as reasonably achievable, taking social and economic factors into account. Because the future course of action taken by the Nation and by commercial utilities would be uncertain if Yucca Mountain were not recommended as a repository site, the continued storage analysis evaluated two hypothetical scenarios with different assumptions about institutional control to bound potential environmental impacts. The assumption for Scenario 1 is that DOE and commercial utilities would maintain institutional control of the storage facilities to ensure minimal releases of contaminants to the environment for at least 10,000 years. Scenario 2 assumes no effective institutional control after approximately 100 years. DOE based the choice of 100 years on a review of generally applicable U.S. Environmental Protection Agency regulations for the disposal of spent nuclear fuel and high-level radioactive waste (40 CFR Part 191), U.S. Nuclear Regulatory Commission regulations for the disposal of low-level radioactive material (10 CFR Part 61), and the National Research Council report on standards for the proposed Yucca Mountain Repository (DIRS 100018-National Research Council 1995, p. 106), which generally discount the consideration of institutional control for longer periods in performance assessments for geologic repositories. increased by as much as 3 times. DOE did not want to appear to overstate the impacts from the No-Action Alternative. Since the publication of the Draft EIS, DOE modified the spent nuclear fuel cladding corrosion rates and failure mechanisms used in the performance analysis in Chapter 5 of the Final EIS. DOE did not update these models for the No-Action Alternative Scenario 2 analysis because the outcome would have been an increase in the long-term radiation doses and potential health impacts, however, the increase would be within the uncertainties discussed in Appendix K, Section K.4. In addition, the radionuclide inventories for commercial spent nuclear fuel were updated for the Final EIS (see Appendix A, Tables A-8 and A-9) to reflect the higher initial enrichments and burnup projected for commercial nuclear facilities. Although these revised inventories were used to estimate potential short-term repository impacts in the Final EIS (Chapter 4), DOE chose not to update the No-Action inventories because, again, the effect on the outcome would be about a 15-percent increase in health impacts in this chapter. Affected populations for the No-Action Alternative were, in general, based on 1990 census estimates and not projected to 2035 as was done for the Proposed Action. However, if the population across the Nation had been projected to 2035, the collective impacts resulting from radiation exposure would have increased by less than a factor of 1.5, which is the average expected increase in national population from 1990 to 2035 (DIRS 152471-Bureau of the Census 2000, all). # 7.1 Short-Term Impacts in the Yucca Mountain Vicinity Chapter 3, Section 3.3, discusses the conditions at the sites that formed the basis for identifying potential impacts associated with the No-Action Alternative. The conditions include the relatively small incremental impacts resulting from continued characterization activities in the Yucca Mountain vicinity until 2002. Under the No-Action Alternative, DOE would terminate characterization activities at the site and would begin site decommissioning and reclamation. Decommissioning and reclamation would include dismantling and removing structures, shutting down some surface facilities, and rehabilitating land disturbed during characterization activities. DOE would salvage usable equipment and materials. Drill holes would be sealed, subsurface drifts and rooms would be left in place, and the portals would be gated. The piles of excavated rock from the tunnel would be landscaped. Areas disturbed by surface studies or used as laydown yards, borrow areas, or the like would be restored. Holding ponds would be backfilled or capped. DOE would not remove foundations or infrastructure such as access roads, parking lots, and sewage systems. The analysis assumed that reclamation activities would take about 1 year. Chapter 2, Section 2.2, describes the No-Action Alternative at Yucca Mountain. The short-term impacts from reclamation of the Yucca Mountain site would occur regardless of the No-Action Alternative scenario and would be the same for both scenarios. #### 7.1.1 LAND USE AND OWNERSHIP Land ownership and control could revert to the original controlling authority. Under the No-Action Alternative, decommissioning and reclamation would begin as soon as practicable at the Yucca Mountain site, which DOE anticipates would happen in 2002. No new land would be required to support the decommissioning and reclamation activities. Because DOE stored topsoil and material from the mountain during site characterization, it would need no additional land to provide soil for reclaiming the material taken from the mountain or for backfilling holding ponds or the reclamation of other previously disturbed areas. Therefore, the No-Action Alternative would not require the disturbance of additional land at the site. The disturbed land would be restored to its approximate preconstruction condition about 100 years earlier than would occur under the Proposed Action. # 7.1.2 AIR QUALITY Transient effects on air quality would result from the exhausts of the heavy equipment that DOE would use during the decommissioning and reclamation activities that the Department expects to complete over a 1-year period. Recontouring and revegetation activities would generate dust containing particulate matter less than 10 micrometers in diameter (PM₁₀). Impacts on air quality would be about the same as those associated with the construction phase during the Proposed Action for the flexible design, as discussed in Chapter 4, Section 4.1.2, because less land would be disturbed by fewer vehicles during decommissioning and reclamation activities. Because the air quality impacts described in Section 4.1.2 represent a small fraction of the regulatory limit (that is, less than 10 percent of regulatory limits), the No-Action Alternative would not adversely affect air quality. # 7.1.3 HYDROLOGY #### 7.1.3.1 Surface Water The No-Action Alternative would not adversely affect surface water. During decommissioning and reclamation, adherence to such best management practices as stormwater pollution prevention plans would ensure that cleared areas and exposed earth would be seeded, graveled, or paved to control runoff and minimize soil erosion. To prevent contamination from heavy equipment, workers would monitor the equipment for leaks and would contain and clean up inadvertent spills of industrial fluids following established spill prevention and cleanup plans. DOE would dismantle and remove most surface structures, equipment, and building materials (DIRS 102188-YMP 1995, p. 2-8), including such items as fuel storage tanks and facilities where petroleum products or potentially hazardous materials like paints and solvents were stored before removal. Hazardous materials removed or generated during decommissioning would be taken from the site and reused, recycled, or disposed of in accordance with applicable regulations (DIRS 102188-YMP 1995, p. 2-8). After closure, contaminant sources would be gone so there could be no movement of contaminants to surface water. The analysis assumed that reclamation activities would be complete about 1 year after the decision to implement the No-Action Alternative, which DOE anticipates would occur in 2002. As part of the reclamation activities, DOE would recontour the landscape to match its precharacterization conditions, ensuring natural drainage patterns. Because the North and South Portal ramps of the Exploratory Studies Facility slope upward to prevent ingress of surface water, they would not appreciably affect natural drainage patterns. Seeding and other erosion control measures would ensure normal infiltration rates. Under the No-Action Alternative, DOE anticipates that the restoration of natural drainage patterns would be complete about 100 years earlier than under the Proposed Action. #### 7.1.3.2 Groundwater The No-Action Alternative would not adversely affect groundwater. DOE would remove all sources of contaminants (such as petroleum products and potentially hazardous materials like paints and solvents) from the site. The entrance ramps of the open portals of the Exploratory Studies Facility are sloped such that surface water would drain away from the openings. During reclamation activities (which would take about 1 year), the Exploratory Studies Facility portals would be closed. # 7.1.4 BIOLOGICAL RESOURCES AND SOILS Approximately 1.4 square kilometers (350 acres) of habitat has been disturbed; most of the disturbance is associated with the Exploratory Studies Facility, the storage area for the material removed from the tunnel, the topsoil storage area, borrow pits, boreholes, trenches, and roads. Site reclamation activities would include removal of structures and equipment, soil stabilization, and revegetation plantings at many of the disturbed sites (DIRS 102188-YMP 1995, all). Proper soil stabilization would prevent erosion. Once the area was reclaimed, stabilized, and planted with natural vegetation, and once activities at the site decreased, the precharacterization floral and faunal diversity would begin to reestablish itself. Some animal species could take advantage of abandoned tunnels for shelter; for example, the tunnels could provide attractive roosting and nesting sites for bats. Individuals of the threatened desert tortoise species could be adversely affected during the decommissioning and reclamation of the site. The No-Action Alternative would have no other adverse effects on biological resources or soils. In addition, the reclamation would result in the restoration of 1.4 square kilometers of habitat. # 7.1.5 CULTURAL RESOURCES The potential effects of other uses of the Yucca Mountain site on cultural resources are not known because no other uses have been identified; therefore, no assessment of the effects is possible. If the land were to revert to the previous controlling authorities, the stewardship of cultural resources would be consistent with applicable policies, regulations, and procedures. Because no additional land would be required for decommissioning and reclamation activities, disturbances to cultural resources on undisturbed land in the area would be unlikely. Leaving access roads in place could have an adverse impact on cultural resources if the site boundaries are not secure. Preserving the integrity of important archaeological sites and resources important to Native Americans could be difficult if the public had increased access to the site. # 7.1.6 SOCIOECONOMICS Many of the repository workers would shift to decommissioning and reclamation tasks. An average annual workforce of about 1,800 would complete decommissioning and reclamation tasks at the repository site. After decommissioning and reclamation, the Nevada Test Site would assume the responsibility of preventing inadvertent entry to the North and South Portal areas. A small workforce would protect these areas after reclamation. After the 1-year decommissioning and reclamation period, the decommissioning and reclamation workforce, along with about 1,400 project-related workers employed away from the repository site, would lose their jobs. The total direct employment reduction, therefore, would be about 3,200 at the completion of decommissioning and reclamation. For every direct job lost, about 0.46 indirect job would also be lost (DIRS 104508-CRWMS M&O 1999, all). *Indirect jobs* are those created as a result of direct employment; examples would include jobs that provide essential services, such as medical and police protection, to the individuals directly employed by the project. Therefore, the overall impact of the No-Action Alternative would be the loss of approximately 4,700 jobs in the region of influence. As stated in Chapter 3, Section 3.1.7.1, approximately 79 percent of workers at the Yucca Mountain site reside in Clark County, 19 percent reside in Nye County, and less than 1 percent reside in Lincoln County or elsewhere. Thus, ending characterization activities would have the greatest potential impact in Clark County. If the region (Clark, Lincoln, and Nye Counties) continued to add about 2,800 new jobs every month, impacts would be offset by continued economic growth (Chapter 3, Section 3.1.7.2). Therefore, terminating site characterization activities would have a very minor impact on socioeconomic factors. The cessation of repository activities would result in the loss of payments by the Federal Government in lieu of taxes. Nye County collects most of the monies associated with the repository project. The 1997 Nye County budget totaled approximately \$83.8 million (county government and school district). During the same period, Nye County received approximately \$5.4 million as payment in lieu of taxes (DIRS 105001-CRWMS M&O 1999, all). #### 7.1.7 OCCUPATIONAL AND PUBLIC HEALTH AND SAFETY FOR ROUTINE OPERATIONS Chapter 2, Section 2.2.1, describes the actions DOE would take at Yucca Mountain under the No-Action Alternative. During the decommissioning and reclamation phase, these actions would expose workers and members of the public to the nonradioactive and radioactive contaminants discussed in Chapter 4, Section 4.1.3.1. In addition, these actions would place workers at risk for occupational (industrial safety) incidents such as illnesses, injuries, and fatalities. Appendix F, Section F.2.2.2, describes the statistics used to estimate health and safety impacts from industrial safety incidents. Because the activities that workers would perform under the No-Action Alternative would involve risks similar to those during the construction and closure phases of the Proposed Action, DOE used these statistics to estimate worker health impacts. Worker exposures to nonradioactive contaminants of concern (diesel engine exhaust and mineral dusts potentially containing respirable erionite and crystalline silica) during decommissioning and reclamation activities would be limited by administrative and engineering means. Exposures would be maintained below occupational levels that could affect worker health adversely, as specified by the Occupational Safety and Health Administration and detailed in the project health and safety plan (DIRS 105032-CRWMS M&O 1999, all). Accordingly, worker exposures to nonradioactive contaminants would not contribute to adverse health impacts. Tables 7-2 and 7-3 summarize the estimated total impacts from workplace industrial hazards and from radiological exposure, respectively, for reclamation activities. Table 7-4 summarizes impacts to members of the public. Involved and noninvolved worker group losses under the No-Action Alternative would be about 94 total recordable cases of injury and illness, resulting in about 45 lost workday cases and no fatalities (Table 7-2). Worker population radiation exposures during the year of decommissioning and reclamation activities would result from exposure to radioactive radon decay products that would emanate from the tunnel's rock matrix and from ambient radiation. Exposures to the subsurface workers could result in a collective dose of about 150 person-rem (Table 7-3). Doses to the **Table 7-2.** Estimated industrial safety impacts for surface and subsurface workers during decommissioning and reclamation activities at Yucca Mountain.^a | | Total recordable | Lost
workday | | |---------------------|------------------|-----------------|------------| | Group | cases | cases | Fatalities | | Involved workers | 80 | 38 | 0 | | Noninvolved workers | 13 | 7 | 0 | | Totals | 94 | 45 | 0 | a. Source: For impact statistics, Appendix F, Tables F-9 and F-10 (1 year of construction, higher-temperature operating mode, uncanistered packaging scenario). maximally exposed involved subsurface worker and noninvolved worker could be as high as about 260 millirem and 70 millirem, respectively. **Table 7-3.** Estimated radiation doses and health effects for surface and subsurface workers from decommissioning and reclamation activities at Yucca Mountain.^{a,b} | | Maximally exposed individual | LCF ^c risk to the maximally exposed | Collective worker | | |---------------------|------------------------------|--|--------------------------------|------------------| | Group | (millirem) | individual | dose ^d (person-rem) | LCF ^e | | Involved workers | 260 | 0.00010 | 140 | 0.055 | | Noninvolved workers | 70 | 0.00027 | 7.4 | 0.0030 | | Totals | NA^f | NA | 150 | 0.057 | - a. Source: Appendix F, Table F-11; data adjusted for 1 year of construction activity. - b. The impacts listed would be the result of 1 year of decommissioning and reclamation activities; adapted from construction phase impacts. Worker doses would result from exposure to radon and other terrestrial radiation sources. - c. LCF = latent cancer fatality. - d. The calculation of doses and health effects assumes no worker rotation for exposure control purposes. - e. Expected number of cancer fatalities for populations. Based on a risk of 0.0004 latent cancer per rem for workers (DIRS 101857-NCRP 1993, p. 112). - f. NA = not applicable. Public radiation exposures during decommissioning and reclamation would result from radon emissions from the subsurface facilities. These exposures could result in an annual dose to the hypothetical maximally exposed individual, about 18 kilometers (11 miles) south of the repository, of 0.43 millirem. The maximum collective dose to the projected population of 76,000 within 80 kilometers (50 miles) would be about 1.7 person-rem (Table 7-4). **Table 7-4.** Estimated public radiation doses and health effects from decommissioning and reclamation activities at Yucca Mountain.^a | | Maximally exposed individual | Annual increase in risk | Collective public | | |--------|------------------------------|-------------------------------------|--------------------------------|---------| | Group | (millirem per year) | for contracting an LCF ^b | dose ^c (person-rem) | LCF | | Public | 0.43 | 0.00000022 | 1.7 | 0.00085 | - a. The impacts listed would be the result of 1 year of decommissioning and reclamation activities (Table 4-2, higher-temperature operating mode, which was assumed to equate to 1 year of initial construction activities). - b. LCF = latent cancer fatality; expected number of cancer fatalities for populations. Based on a risk of 0.0005 latent cancer per rem for members of the public (DIRS 101857-NCRP 1993, p. 112), and a life expectancy of 70 years for a member of the public. - c. The collective dose to 76,000 individuals living within 80 kilometers (50 miles) would be from radon emissions from the subsurface facilities. The increased likelihood of the maximally exposed individual worker experiencing a latent cancer fatality would be very small. #### 7.1.8 ACCIDENTS Under the No-Action Alternative, DOE would not ship spent nuclear fuel and high-level radioactive waste to Yucca Mountain, and there would be only limited quantities of nonradioactive hazardous or toxic substances. Therefore, accident impacts would be limited to those from traffic and industrial hazards. Table 7-2 lists impacts from industrial accident scenarios and Section 7.1.14 discusses impacts from traffic accident scenarios. #### **7.1.9 NOISE** Noise levels during decommissioning and reclamation activities would be no greater than those of site characterization activities. After the decommissioning and reclamation activities were complete, ambient noise would return to levels consistent with a desert environment where natural phenomena account for most background noise (see Chapter 3, Section 3.1.9.1). The No-Action Alternative would not adversely affect the noise levels of the Yucca Mountain region. #### 7.1.10 AESTHETICS Site decommissioning and reclamation activities would improve the scenic value of the site. Borrow pits and holding ponds would be filled or graded, stabilized, and revegetated. Most structures would be removed down to their foundations. The North and South Portals would be gated. The surface area of these disturbed areas would represent a small fraction of the total surface area of the repository site and, therefore, would be unlikely to cause adverse impacts to the overall scenic value of the area. Under the No-Action Alternative, the site would be returned to a state as close as possible to the predisturbed state; therefore, DOE would not expect adverse impacts to the scenic value of the area. Site restoration would occur about 100 years earlier than under the Proposed Action. # 7.1.11 UTILITIES, ENERGY, AND MATERIALS Decommissioning and reclamation activities would consume electricity, diesel fuel, and gasoline. Much equipment and many materials would be salvaged and recycled. DOE would recycle buildings as practicable. After the site closed, minimal surveillance activities would require some electricity and gasoline. The No-Action Alternative would not adversely affect the utility, energy, or material resources of the region. # 7.1.12 WASTE MANAGEMENT The decommissioning and reclamation of the Yucca Mountain site would generate some waste requiring disposal, including sanitary sewage, sanitary and industrial solid waste, small amounts of demolition debris, and very small amounts of hazardous waste. DOE would dispose of the wastes as it has during the site characterization activities. DOE would minimize waste generation by salvaging most of the equipment and many materials and redistributing them to other DOE sites or selling them at public auction. Remaining chemical supplies would be redistributed through the DOE excess program, which collects equipment and materials no longer in use for reassignment to other DOE sites or Federal facilities, donation to state governments, or sale to the public. DOE would preserve, rather than demolish, certain facilities that could be useful in the future, such as the electrical distribution and water supply systems. Sanitary sewage would be disposed of in the onsite septic system. At the end of reclamation activities, DOE would cap the inlets to the septic system and leave the system in place. DOE would dispose of sanitary and industrial solid waste and demolition debris in existing Nevada Test Site landfills, where disposal capacity would be available for about 70 years (DIRS 101803-DOE 1995, p. 8). # 7.1.13 ENVIRONMENTAL JUSTICE An examination of analyses from other technical disciplines associated with terminating characterization and construction activities at Yucca Mountain and decommissioning and reclaiming the site shows no potential for large impacts in areas other than cultural resources and socioeconomics. The cultural resources analysis identified the possibility that increased public access (if roads were left open and site boundaries were not secure) could threaten the integrity of archaeological sites and resources important to Native Americans. The socioeconomic analysis identified a potential loss of as many as 4,700 jobs (see Section 7.1.6). Disproportionate impacts to minority or low-income populations from potential job losses would not be expected because there is no reason to believe that minority or low-income employees would be any more likely to be affected by job loss. #### 7.1.14 TRAFFIC AND TRANSPORTATION Fatalities from project-related traffic would be unlikely during decommissioning and reclamation. As a gauge of the probability of 1 fatality, decommissioning and reclamation activities would require about 1 year to complete, or about one-fifth of the time to construct the repository. The analysis in Appendix J estimated less than 0.7 fatality from traffic accidents during repository construction, so less than 0.15 traffic fatality would be likely during decommissioning and reclamation (see Appendix J, Tables J-64 and J-65, for details). # **7.1.15 SABOTAGE** There would be no nuclear materials at the Yucca Mountain site, so sabotage concerns would not be pertinent. # 7.2 Commercial and DOE Sites This section analyzes short- and long-term impacts of continued storage of spent nuclear fuel and high-level radioactive waste at 72 commercial and 5 DOE sites for 10,000 years (the period considered for the Proposed Action). The analysis includes No-Action Scenarios 1 and 2. The following paragraphs discuss short-term impacts under No-Action Scenario 1. Because the analysis assumed that all sites would maintain institutional control for the first approximately 100 years, the short-term impacts for Scenarios 1 and 2 would be the same. For consistency with the Proposed Action, this analysis assumed the No-Action scenarios would begin in 2002. This analysis considered the Idaho National Engineering and Environmental Laboratory to be a site for naval spent nuclear fuel because the Laboratory stores such fuel. Under the No-Action Alternative, commercial utilities would manage their spent nuclear fuel at 72 facilities. DOE would manage its spent nuclear fuel and high-level radioactive waste at five facilities (the Hanford Site, the Idaho National Engineering and Environmental Laboratory, Fort St. Vrain (spent nuclear fuel only) the West Valley Demonstration Project (high-level radioactive waste only), and the Savannah River Site). The No-Action analysis evaluated the DOE spent nuclear fuel and high-level radioactive waste at existing sites or at sites where existing Records of Decisions have placed or will